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J. Phys. A: Math. Gen. 15 (1982) 611-625. Printed in Great Britain 

Extended BRS invariance and OSp(4/2) supersymmetry 

R Delbourgo and P D Jarvis 
Department of Physics, University of Tasmania, Hobart, Tasmania 7001 

Received 9 June 1981 

Abstract. A superfield action is proposed within an OSp(4/2) framework whose component 
form reproduces the covariant (-gauge Yang-Mills action, but with modified ghost- 
compensating terms. (The case ( = 0 reduces to the usual Landau gauge.) ‘Supertrans- 
lations’ give rise to extended BRS transformations, and lead to constraints amongst the 
renormalisation constants. In addition, the system admits ‘super-Lorentz’ transformations, 
which mix vector and ghost fields. For other field representations, the ghost structure 
suggested by the space-time supersymmetry OSp(4/G) is also exhibited. This simplifies the 
rules for counting ghosts and their own ghosts. 

1. Introduction and main results 

It has long been recognised that the so-called BRS symmetry (Becchi eta1 1975,1976) of 
the gauge-fixing plus ghost-compensating Lagrangian in Yang-Mills theories (Feyn- 
man 1963, De Witt 1965, Faddeev and Popov 1967) has powerful implications for their 
quantisation and renormalisation. Subsequent investigations have revealed that an 
‘extended’ BRS set can be constructed (Curci and Ferrari 1976, Ojima 1980), involving a 
two-parameter ‘BRS group’ where the roles of ‘ghost’ and ‘antighost’ can essentially be 
interchanged. Following earlier work on the unextended case (Ferrara et a1 1977, 
Fujikawa 1978), Bonora and Tonin (1981) in an important recent paper have presented 
a concise derivation of the extended BRS transformations from a manifest superfield 
formalism, in which the BRS group consists of supertranslations in the a-number 
superspace coordinates. 

Several arguments can be adduced leading to the possible existence of a supersym- 
metric BRS formalism. Firstly, the fact that the gauge potential AL(x) is accompanied 
by a-number ‘ghost’ fields, denoted here by o a ( x )  and W ” ( x ) ,  all transforming in the 
adjoint representation of the gauge group, is highly reminiscent of Fermi-Bose 
supersymmetry, where gauge supermultiplets, including vector bosons and Majorana 
fermions, necessarily fall into the adjoint representation (for a review, see Fayet and 
Ferrara (1977)). Secondly, there is a natural ‘auxiliary field’ formalism for gauge fixing, 
whereby the usual covariant term -(aWA,)*/25 is replaced by 

(aWAW)B +&B2, 

where B(x)  is an auxiliary field of dimension two. B(x)  here plays a role similar to that 
of the auxiliary field in Fermi-Bose sypersymmetry. Finally, it is to be expected that a 
consistent supersymmetric derivation would provide a natural rationale for the exis- 
tence of the two-parameter extended BRS group, in which the ghost and antighost fields 
w and W are placed on an equal footing. 
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It is found (Bonora and Tonin 1981) that the appropriate supersymmetry involves a 
six-dimensional superspace with coordinates (x,, 8, 8). Making superfield expansions 
on the a-number coordinates 8 and 6 Bonora and Tonin (198 1) impose constraints on 
the ‘supercurvature’ and obtain sufficient conditions that supertranslations on e and 8 
correspond to extended BRS transformations, and the most general supersymmetric 
Lagrangian density is a two-gauge parameter generalisation of the usual Yang-Mills 
ghost Lagrangian. In a related paper, Bonora et a1 (1980) have justified their 
derivation in terms of a geometrical construction, enabling an interpretation to be 
given to terms such as ‘connection’ and ‘curvature’, which were undefined in the 
original work. 

It is the purpose of the present paper to present an alternative formulation of BRS 
supersymmetry. We go beyond the work of Bonora and Tonin (1981) and Bonora et a1 
(1980) in the sense that their group of ‘supertranslations’ in (e, 8) space is here enlarged 
to include transformations mixing x, and (e, e’>. The appropriate supersymmetry is a 
real form of the inhomogeneous OSp(4/2) supergroup (Dondi and Jarvis 1979), 
consisting of supertranslations, Lorentz transformations, symplectic transformations in 
(e, 8) space, as well as ‘supertranslations’ and ‘super-Lorentz’ transformations (§ 2). 
With the help of this space-time supersymmetry, the definitions and transformation 
properties of the gauge potential and field strength follow naturally (0 3), without 
further geometrical constructions. 

The formalism of a gauge theory over six-dimensional superspace having been 
introduced, attention is restricted to a special class of potentials (beyond what gauge 
freedom alone would allow). An action for pure Yang-Mills theory, with gauge-fixing 
and ghost-compensating terms, is derived in § 3 as the component form of an appro- 
priate superfield action, wherein the gauge potential belongs to the special class. The 
Lagrangian, equation (15), is a particular case of that of Bonora and Tonin (1981), 
wherein the two independent gauge parameters are made equal. There is a quartic 
ghost self-coupling, and the vector-ghost coupling attains a symmetrical form 
reminiscent of charged scalar electrodynamics. These additional couplings fade out as 
8 + 0, and in this limit with PA, = 0, the model reduces to the conventional Landau 
gauge. 

Supertranslations give rise to extended BRS transformations amongst the 
component fields (as in Bonora and Tonin 198 1). These are exposed in § 4, and used to 
derive generating functional equations. The resulting BRS identities (for the effective 
action) imply renormalisability of the model. Relations between the renormalisation 
constants are exhibited, and verified to one-loop order. The onIy difference from the 
usual Yang-Mills case is in the fact that the longitudinal part of the vector boson 
propagator (and hence the gauge parameter 6) receives a separate renormalisation. 
The transverse part continues to obey the usual Slavnov-Taylor identity. Moreover, 
the symmetry of the model ensures that all counterterms already have counterparts 
in the bare Lagrangian. In particular, renormalisation respects the symmetrical form 
of the vector-ghost interaction. 

The space-time supersymmetry we propose also admits super-Lorentz trans- 
formations, which mix the coordinates x, and (8, 8). In contrast to supertranslations, 
the class of gauge potentials of interest is not super-Lorentz invariant. Nonetheless one 
can implement a corresponding set of vector-ghost mixing transformations (0 5) .  The 
resulting identities for the effective action are also presented and checked. 

Concluding remarks are made in 86, together with a comparison with other 
approaches. Finally, the ghost structure suggested by the OSp(4/2) supersymmetry is 
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given for other field representations, including the totally symmetrical and mixed- 
symmetry rank-three gauge fields. This represents a tidy and effective way of counting 
ghosts and superghosts for any chosen field representation. 

2. Space-time supersymmetry 

The space-time supersymmetry which we impose is a real form of the six-dimensional 
inhomogeneous orthosymplectic supergroup OSp(4/2) A TdI2, the group of all super- 
linear transformations preserving the distance (Dondi and Jarvis 1979) 

( X  - Y)* = ( X  - Y)ugu”(x - Y ) ,  

between points in superspace. Taking Xu = (xN, ea), where p = 0, 1 , 2 , 3  and (Y = 1,2,  
we have 

(1) xuguux, = xNx, + eaea. 
Here the orthosymplectic metric is 

where 77”” is the usual diagonal Lorentz metric, and E,@ is the 2 x 2 antisymmetric 
matrix, 

The real form is determined by that of the underlying Lie group (Parker 1980), 
which we take to be simply O(3, l )  X Sp(2, R), namely the Lorentz group together with 
2 x 2 real symplectic transformations. The group Sp(2, R)  is more familiar as SL(2, R), 
locally isomorphic to the three-dimensional Lorentz group SO(2,l). The 8, thus 
transform as a spinor representation of this group. 

Since the group matrices are real, one can in principle take 8, to be real. However, 
to ensure the reality of the bilinear form (l) ,  with the usual properties of complex 
conjugation for a-numbers, a different assignment must be made. The choice adopted 
in the usual BRS formalism (Bonora and Tonin 1981, Kugo and Ojima 1979), 

e: = el, e; = -e2, 
is one possibility. However, the Sp(2, R) symmetry ensures that for the present case, 
the choice 0 2  = 6: is an equally feasible alternative. This choice is adopted below, 
where we write (el, d 2 )  = (e, g) (Dondi and Jarvis 1979). Most of the formalism goes 
through for either choice; in the former case, it is more usual to write O2 = i6, el = a, and 
for the ghost fields 6 = ic?(x), w(x) = c(x), with a, 5, c(x) and E(x) real (Bonora and 
Tonin 1981, Kugo and Ojima 1979). 

In addition to the usual translations and Lorentz transformations of the Poincar6 
group, the space-time supergroup includes symplectic rotations on ea, 

h, e,)+(x,,&p), 
where T:E ,@T; = E ”’. There are also the supertranslations 
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and the super-Lorentz transformations, 

(x,, e,)+,+A$e,, e,-A:x,). (4) 

A; = A Y * ,  7 2  = 71 9 7 2  "71 * 

Clearly, for compatibility with the chosen reality conditions of the e,, we must have 
2 1' 1 2* * 

E 2 = E 2 ,  

The superfield actions we shall construct require the group-invariant measure 

d6X = d4x de dt% 

That this is indeed invariant can be readily checked for supertranslations and symplectic 
rotations. For the super-Lorentz transformations, the same applies after use of the 
exponential formula to evaluate a superdeterminant. 

3. Superfield formdim 

In formulating a local gauge theory over superspace (Salam and Strathdee 1974), one 
encounters superfields 

@ ( x ,  e) = A ( x ) +  e u 4 , ( X ) + e P e @ ( X ) ,  

whose components in the Taylor expansion (a quadratic polynomial in 0) are ordinary 
fields. In particular, the gauge potential will be a superfield 

@,(x ,  0) = ( A , ( x ) ,  A , ( x ) )  + (higher-order terms), 

with A , ( x )  a c-number field, and A,(x) an a-number field, transforming as the 
six-dimensional vector representation of OSp(4/2), and taking values in the Lie algebra 
of the gauge group (taken to be compact): 

@,(x, 8) = @,",(x, 8)T" 

where [T", T b ]  = ifabcTc, and fabc are the totally antisymmetrical structure constants. 
( x ,  e) is a superfield transforming in the 17-dimensional 

graded-antisymmetrical tensor representation of OSp(4/2) (Dondi and Jarvis 1980, 
1981). If we define the signature factor [ u u ] = i l  such that [4 ]=-1  and [w ]=  
[JLCX] = +1, we have, following the usual constructions (see, for example, Abers and Lee 
1973), 

( 5 )  

The gauge field strength 

= a,@, - [uv]a ,@,  -ie[@,, QUI, 
where e is the gauge coupling constant. Thus 

= a,@, - a,@, - ie[@,, @"I, 
a,,,, =a,@, --a,@& -ie[@,, @m], 

=a,@@ +a,@,, -ie[@,, @,I+, 
with 

@&U = --@U,, @,U = -@U,, @U, = @,U. 

Gauge transformations of @, and 
the gauge group are given as usual by 

under (x, @)-dependent elements U ( x ,  0) of 

@L(x, e) = u-'@,(x,  e)U-(i/e)(a,,U-l)U, @ L ~ ( x ,  e)= U-'@,~(X, e)u. (6) 
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Any gauge transformation can be uniquely decomposed (Bonora et a1 1980) as a 
product of a purely x-dependent piece Uo(x) and an x-  and &dependent piece Ul(x, 0) :  

(7) 

At this stage we introduce the special class of gauge potential superfields QU(x,  0 )  
which will be required in deriving the Yang-Mills action (Bonora and Tonin 1981). 
Namely, we restrict attention henceforth to those potentials which are related by a 
gauge transformation to the special form in which the only non-vanishing component 
field is the ordinary four-vector potential A,(x). Without loss of generality, we may 
take the gauge transformation in question to be of the Ul(x, e)  type (since Uo(x) does 
not mix components). For the special class we have 

U(x, 0 )  = {exp[-ieA(x)]Xexp[-ie(B"o,(x)- eBe$(x) )I l=  UoUl. 

@ J X ,  e )  = U;' ( U' -;(auU? ) U' 

and 

where F,,(x) is the usual Yang-Mills field strength. 
It should be emphasised that this restriction is to be regarded as an additional 

assumption, beyond what is allowed from gauge freedom alone. For the present 
superfield formalism it corresponds in some sense to the usual procedure of gauge fixing 
and ghost compensation: this viewpoint is of course borne out by the final results. 

The six-dimensional action is taken to be the sum of a gauge-independent piece and 
a gauge-dependent piece : 

W ( @ )  = WO(*) + W'(@). 

Observing that, if belongs to the restricted class of potentials, 

(U;'F,,U~)~(U;'F,,U~)~ = -F"@"F;,, (10) 

so that the usual Yang-Mills Lagrangian is formally invariant. The corresponding 
six-dimensional action is simply chosen to reflect this: 

Here the action of de  dgis to pick out the coefficient of e"&, namely -$"""F~,,. Thus 
the supertranslation invariance of WO is also assured. 

The choice of gauge-dependent action Wl is not unique, and can only be guided by 
considerations of dimension, supersymmetry, and ultimately with a view to the required 
final form. The choice we adopt is 

where 
It remains to give aU(x, e)  and the component form of the action for the restricted 

class of potentials defined by (8) and (9). Expanding the exponential in (7), the finite 

is of the restricted form, and 5 is a real constant. 
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group element Ul(x, 8) can be written 

Udx, 8) = 1 -ie@op +&eY8,(B -$iew808).  

From (ti), we have 

~ , = A , + 8 P D , o a - f e Y 6 , [ D , B + f e ( D , w 8 ) ~ ~ g ] ,  

(13) 8 CP, = U, + BB(BEa, - f e w p  x w,) -$eY8,[-eB xw,  +$e2(w, x w ) x u 8 ] ,  

where D, is the covariant derivative, 

D,B = a,B + eA, x B, 

etc. Taking the 8”8, coefficient of 2CP”CPu/Z gives with (10) the Minkowski-space form 
of the actiont: 

In (13) and (14), the dot and cross products are generalisations of the usual vector 
notation : 

P A ,  * B = a,A;Ba, (w, x = fabcW:W;, etc. 

With appropriate rescalings of B and w,, and expanding in terms of the spinor 
components w and 6 the total Lagrangian becomes 

2= -~C”’ .F , ,+ (a f iA , .B+:~B2) -a f i c ; , . a ,w-%eA”.G xs,w+$e2((G X W ) ~ .  (15) 

Elimination of the auxiliary field B leads to the usual covariant gauge-fixing term 
-(a”A,)*/25. The present Lagrangian differs from the conventional one in the form of 
the vector-ghost coupling, and the quartic ghost self-coupling. It is a particular case of 
that of Bonora and Tonin (1981), in which the two independent gauge parameters they 
introduce are held equal. The fields 

(16) 

are the same as B, B in their notation, and the identification is completed by adopting 
the standard reality assignment (;j = iz, w = c, with c, E real (see, for example, Kugo and 
Ojima (1979), and references therein). However, as emphasised above, the convention 
6 = a* is also feasible in the present formulation. The additional symmetry between w 
and G forbids terms which would be formally non-Hermitian if li and w are complex 
conjugates, and in particular leads the vector-ghost coupling to attain a form 
reminiscent of charged scalar electrodynamics. In the limit 6 + 0, the additional terms 
fade out, and one is left with the conventional Landau gauge. The Feynman rules from 
(15) are the conventional ones for the vector field (see, for example, Abers and Lee 
1973). Those for the ghost field are given in figure 1. 

B ,  = B f ieG x w 

t It should be noted from (11)  and (12) that the action is formally scale invariant at the classical level. 
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Figure 1. Feynman rules for ghost couplings. 

4. Supertranslations and the effective action 

The action (1 1) plus (12) is formally invariant under supertranslations 

SQ,(~ ,  e ) = Q u ( x ,  e+E)-- , (X,  e). 
Moreover, it can be verified that the supertranslations respect the condition (8) defining 
the restricted class of gauge potentials. The component form of the supertranslations 
follows from (13). In terms of the spinor components E and E, we have with (16) 

SA, = ED” - &DP(3, Swff-ieEw X w - EB-,  SO = -EB+ + deEO X 6, 

SB, = 0-eEB, x 0, SB- = eEB- X w + 0 .  (17) 
These transformations thus provide an invariance of the total Lagrangian, as also 
follows explicitly from (15). This is the so-called extended BRS invariance. The 
symmetrical form with respect to E and E is in keeping with the present treatment of w 
and O (in fact, the dual 6, transformations can be obtained from the 6,- transformations 
by Hermitian conjugation, if the convention (3 = w* is adopted). The fact that the 
supertranslations anticommute is reflected in the so-called nilpotency of the BRS 
transformations, namely from (17) 

and so on. 
In following the implications of the BRS invariance for the quantised model and its 

renormalisation, it is convenient to eliminate B for -(a”A,)/e (which is consistent with 
(17)). Also, we restrict attention only to the S,--type BRS transformations. Finally, the 
nilpotency conditions allow the introduction of composite source terms in the Lagran- 
gian: 

S,-B+=O=S,B+XO, 

2Zs = j ”  *A,, +I* w + (3 * J + f” * D,w -$e l*  w x w - K * B ,  - eK - B - x  U. (18) 

(19) 

The equations of motion following from 9- 9 s  read 
1 2 -  a’’D,w +?ec(B- x w )  = J + f e K  x w +Se K x (U X u ) ,  
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plus a similar (but more complicated) equation for 6, plus 

1 1 e 
D ” F , ~  + -aF (a”Au) - iew x ZW = j y  - I: x w - -ax + - a u @  x w 1. (20) 

5 5 5 

B ,  = -(aC”A,)/( *$e6 x w 

In (18) and (19), we have 

(21) 

in place of (16). 

Equations (19) and (20) impose conditions on the vacuum functional 

Z ( j ” , J , J , I ” , f K , K ) = N l d [ A , w , w ] e x p ( i I  d x ( B - 3 s ) ) ;  

for example 

Similarly from the supertranslations (17) one finds that 

from the variation of Bs. It is usual to pass to the connected vacuum functional W via 
2 = eiw and thence to the effective action 

I ’ (A,w,W,I’ , fK,K)= W ( j , J , j ; f ” , f , K , K ) +  dx(j’”A,+jiu+GJ) I 
with the correspondences 

Sr/sA’” = j,, SW/Sjw =-A”,  

and so on. (22) and (23) become, for example, 

and 

After differentiating (24) and (25) with respect to S, w and & so as to leave zero ghost 
number, the equations translate into identities amongst the strongly connected Green 
functions, as follows. On the w equation, apply 

s s2 S3 s’ - 
S O b ’  sub SA”‘ ’ sob SA”“  SA^^' S u b  SW‘ S o d  * 

On the BRS identity, apply 

s2 s3 s4 
S o b  SA” sub SA”‘  SA^^' s ~ ~ s A ~ ~ s A ~ ~ s A ~ ~ ’  

s3 s4 
S”bs6cSWd’ S u b  8WC S W d  6A”“ 
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Thus we obtain (integration over x is implied in (27),  but not over other spatial 
arguments): 

s2r 6 s2r 
b + -  - -- - s2r 

Sf'" Swb 86" Sw 2 SK," Sub' a: 

+ (cde))  = 0, 
s4r s2r + 

S ~ : S ~ ~ S A ~ ~ & A K ~ ' S K : S A ~ C  

s2r s4r d - ( b d ) )  +-' s4r 
Sw," 86i' Sf': S o b  6wd SA" 

+( S2r s ~ ;  sob 'SK; SA" s6ic sw 
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These identities can be verified at tree level using the Feynman rules (figure 1 : those 
for the sources follow trivially from (18)). For example, (27a)  becomes (figure 2 )  

( -qwYk2+kpky( l  -~-')(-ik"Sb')+(-i~-lku)(kZSbc) = 0, 

At one-loop order the identity is given in figure 3, and is verified by an explicit 
calculation. 

&4vuuv'smc+. + '+'9̂̂"̂ = o  

Figure 2. A tree-level BRS identity. 

+ ~ - ~ * ~ ~ ~  = o  

Figure 3. BRS identity at one-loop level. 

Renormalisation is effected by introducing appropriate (2 - 1)Stype counterterms 
in order to cancel the quantum correction infinities of the effective action. The 
superficially divergent graphs correspond to the original terms in but may also include? 

s4r 
SA SA' 

(as in scalar electrodynamics), and a4r 
SA SA SLj Sw 

These functions do not arise at tree level but enter the general identities (26) and (27). 
Because they are not included in 9, we know that any potential divergences must cancel 
by symmetry requirements. An explicit check at one-loop level (taking zero external 
momentum for simplicity and ignoring infrared problems there) bears this out. 

In a similar vein, it is the Sp(2) symmetry which dictates the renormalisation of the 
three-point ghost vertex S3r/SA 66 So. In spinor notation, the only possible coupling 
is 

A w * w u  xawwaccAw-Lj xZ,w, 

t Note that 6'rISK 6A 6A vanishes identically. 
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since awA,. oa x oa =O. The only slight complications occur in the source terms: 
additional contributions to S'I'/SRSo and S'rlSkSA So are handled by extra 
counterterms. Finally, then, the renormalised Lagrangian reads 

9 = -~ZF",w"a - (1 / 2 ( )Z"(a .  A")' - ia&& " a,w, - $e iJakA ,"& '$,w 

+ ie'(Z4(fabc& bo c ) 2  + &4Z4(f"bcAiA'y)2 - j'"A: -Poa - &" J" 

+$e.2?JabcjaoboC -?""(Za,o" + ezJabcAiwc)  

- K" (28 * A"/( - ief "bc2eGboC) 

- ef a b c f f a  (zed * A '//5 + 3 e 2 4 f b d r & j d ~ e ) ~ c  

- e (a.?,/() f "A a," - Sia,za aPw", 

F:,, ~a,A"-ayA:+e2~Z-'fabCAiA'y. (28)  

By equating infinite partst, the equations of motion and BRS identities translate into 

with 

relationships amongst the different Z ' s .  For example, (27a)  yields 

( p w p 2 / ( ) [ ( l  -2,') + ( 1  -2) - ( 1  -2) - ( 1  -231 = 0.  

Z / Z ,  = 2/2,, Z4 = 0, 2 4  = i 2 / Z "  (29) 

The complete set of relations derivable from (26) and (27) in this manner is 

for field renormalisations, and 
* .  2 = z?z/i, z/2, = Z/Z, ,  2 4  = 2 4 ,  

Z = i + S i ,  (30) z, = 2, = 2, = 2, +$a,&! = $(Ze +i,), 
for source renormalisations. These identities may be verified to one-loop order using 
their calculated values given in table 1 .  

Table 1. Renormalisation constants in one-loop order. C is the adjoint representation 
Casimir invariant and L = (ez/16?rz) log (A2/p2). 

CL 
13-35 

1 +- 
6 

z 

17-95 
1 +- CL 

12 Z, 

z 1 + t5CL 
z e  1 - a5cL 
2 1 

1 - ascL 

t Striclly speaking, one could introduce additional sources at the bare level for the extra terms involving 82  
and Sze. However, the results are unaffected at the one-loop level. Further, we have omitted a quantum-loop 
induced SZKK counterterm, which does not contribute to the equation of motion. 
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Equations (29) and (30) mean that infinities can be precisely associated with 
multiplicatiue renormalisations of the fields and coupling in the original bare Lagran- 
gian (subscript 0) wherever they appear: 

A, = z 1 / 2 ~ ,  w,=Z w, e, = ez,/z3I2, .& = (Z/Z". (31) 

In particular, (29) includes the Slavnov-Taylor identity (Taylor 197 1, Slavnov 1972) 
Z/Z, = i/&. By the same token the sources, and indeed the BRS transformations 
themselves, undergo multiplicative renormalisation. 

* 112 

5. Super-Lorentz transformations 

The action (1 1) plus (12) is formally invariant under the super-Lorentz transformations 

(32) 

where h(x, 8 )  is given by (4). However, these transformations do not respect the 
condition (8) defining the restricted class of gauge potentials. In contrast to the case of 
supertranslations, the variations implied by (32) are incompatible with the parametris- 
ation of the components in (13) in terms of just four fields A,(x), w , ( x )  and B(x) .  

A set of transformations can still be obtained from (32) by extracting the variations 
of A,(x), w,(x)  and B ( x )  from the lowest-order components in (13), as if the remaining 
variations were consistent. In the case of S A , ( x ) ,  (32) and (13) conspire to give a 
ghost-dependent gauge transformation given by 

SQ,(X, e )  = A:QJA-'(X, e))-@&, e), 

SA, = D,(~,,x"w)-D,(/\~""w) (33) 

in terms of the infinitesimal spinor components I,, and A,,. Comparing (33) with ( 1 7 4 ,  a 
formal similarity with an x-dependent BRS transformation is seen. The complete set of 
transformations, in terms of the appropriately scaled variables, is 

SA =D, (~J""w) ,  Sw = I J "0 X 0, SO = (2/6)I'!4, - IJ "B,, 
(34) 

SB+ = -(2/5)I@D,w, SB- = -.$'ap,w + IJ"B- X W ,  

plus a similar set in terms of A,,, derived by Hermitian conjugation (cf (17)). 

S D , ~  = $eI,w x U ,  

The basic set (34) further imply 

Sw x w = 0 ,  SB- x w = -(l/[)I'a,(w X U ) ,  

from which 

S2'= -(2/5)hwF~,,a"wa. (35) 

Furthermore, it can be verified that the variations (34) are consistent with the equations 
of motion (19), in the absence of sources. Thus the auxiliary field B can be eliminated, 
as in the supertranslation case. The identity for the generating functional resulting from 
(34) and (35) is 



Extended BRS invariance and OSp(4/2) supersymmetry 623 

Some simplification is possible with the use of the equation of motion, (19). In fact, in 
the Landau gauge [ + O ,  (34) and (35) are equivalent to (19), in the absence of 
composite sources. Passing to the effective action, one finds in general that 

sr sr sr sr sr sr 
-,-+-.- +-.-) 
8A” 8fA Sw Sf 66 SK 

where 

ANA = S2 W/STSj”, 

and an additional integral over the spatial coordinate is understood in the appropriate 
A,, terms. 

6. Conclusions 

We have seen above that an alternative formulation of gauge fixing in pure Yang-Mills 
theory, based upon inhomogeneous OSp(4/2) space-time supersymmetry, leads 
naturally to the model Lagrangian (15). Here a covariant gauge-fixing term for the 
vector potential is accompanied by non-standard ghost couplings, including a four- 
point coupling (cf Das 1980). As a result of additional symmetry between ghost and 
anti-ghost fields, the Lagrangian is formally real if these are complex conjugates (in 
contrast to the usual case). The model is renormalisable in standard fashion, and the 
BRS transformations lead to the Slavnov-Taylor identity for the renormalisation of the 
transverse part of the vector propagator. The renormalisation constants are given to 
one-loop order in table 1. 

Bonora et a1 (1980) have justified their superfield formalism in terms of a fibre 
bundle construction. In this and other geometrical approaches (Thierry-Mieg and 
Ne’eman 1979, Quir6s et a1 1980), no discussion has been given of a possible enlarged 
space-time supersymmetry. With this at hand, however, the model can be regarded as 
being obtained by dimensional reduction from the six-dimensional theory. Indeed, the 
condition (9) can be interpreted as the usual one of ‘triviality in higher dimensions’. 
Naturally this breaks the fullOSp(4/2) supergroup, but respects supertranslations, and 
Sp(2) transformations. 

The present formulation of gauge fixing and ghosts can be applied straightforwardly 
to other models. For an antisymmetrical rank-two tensor gauge field, the appropriate 
OSp(4/2) representation is the rank-two graded anti-symmetrical tensor represen- 
tation (the 17-dimensional adjoint representation, as in ( 5 ) ) .  This contains six gauge 
fields AI,,], eight ghosts A,,, and three scalar fields A(,,,, with graded dimensions 
6 - 8 + 3 = 1, as is appropriate for a scalar field (Siege1 1980, Marchetti and Tonin 
198 1). For gravity, the irreducible rank-two traceless graded-symmetrical tensor 
representation of OSp(4/2) is 18-dimensional (note that 17 + (18 + 1) = 36), in accord 
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with the usual assignment (Delbourgo and Medrano 1976) of two vector ghosts g,, 
accompanying the gravition field g(,,v), and graded dimension 10 - 8 = 2. Including the 
OSp(4/2) trace, the reducible 19-dimensional representation may correspond to a 
scalar-tensor theory (see also Namazie and Storey 1979). 

More generally, one can consider ‘extended’ ghost supersymmetries OSp(4IG) in G 
dimensions, where G is even. For example, the rank-three graded-antisymmetrical 
tensor representation of OSp(4IG) (including the gauge fieid ALA,,]) has graded 
dimension i(4 - G)(3 - G)(2 - G), suggesting that for G = 2 or G = 4, the theory has 
zero physical degrees of freedom. Similarly, consider the rank-three gauge field of 
mixed symmetry proposed as a representation of a massless spin-1 field (Curtright 
1980). The appropriate OSp(4/G) representation would appear to be the reducible 
rank-three tensor, of graded mixed symmetry type (with non-zero graded trace). The 
graded dimension (the same as that in SU(4/G)) is 4(4 - G)(5 - G)(3 - G) (cf Bars and 
Balantekin 1981). The count of degrees of freedom is thus correct for G = 2, while for 
G = 4 the theory appears to be null. In the former case, the ghost assignments, from 
O(4) x Sp(2) reduction (the same as the SU(4) x SU(2) case: Dondi and Jarvis (1981) 
are: 20 gauge fields A[,,IA ; 32 ghost fields A,,, ; 16 gauge fields A,,@, and 2 ghost fields 
 AI^^^^. As a final example, the graded dimension of the irreducible totally graded- 
symmetrical graded-traceless rank-three tensor representation of OSp(4/ G)  is i(8 - 
G)(3 - G)(4 - G), suggesting that the structure of a symmetric rank-three tensor gauge 
theory is for G = 2: 20 gauge fields A(*,,,, 20 ghost fields A(+>,, 4 gauge fields 
supplemented by 4 - 2 = 2 trace conditions, leaving two degrees of freedom appropriate 
to a massless (spin-3) gauge field. Because it is so concise and simple, we would 
recommend this method of counting the families of ghosts in preference to others. 
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